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ON THE COMPUTATION OF STRESS INTENSITIES
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Abstract-A path independent integral formula is developed for the computation of the intensity of the stress
singularity at a right corner where one edge is rigidly fixed and the other is free of traction. Numerical results
are presented for the case of a strip compressed between rough rigid stamps and compared with previously
published results for finite and semi-infinite strips and cylinders.

INTRODUCTION

A problem of continuing interest is the calculation of the stress field in a cylinder or strip with
prescribed tractions or displacements on its ends. In particular, when an end is rigidly fixed and
the lateral surface is unrestrained, the stress field in the neighborhood of the corner becomes
singular, and the strength and intensity of this singularity is of interest (see, for example [1-5]). In
this note we utilize a reciprocal work contour integral method described earlier [6]t to develop a
simple but efficient computational technique for evaluating the strength and intensity of such
corner singularities in plane problems. It turns out that the strength of the singularity in the
axisymmetric problem is independent of the cylinder radius and hence is the same as for the
plane strain case we will treat here (see [2]). As will be seen later the stress intensities computed
for similar problems in both cases are also generally comparable.

DERIVATION OF THE CONTOUR INTEGRAL FORMULA

We outline briefly the development of the singular elastic states needed in the reciprocal work
representation. An origin of polar coordinates is placed at the corner with () = 0 the fixed edge
and () = 1T /2 the traction free edge as indicated in Fig. 1. In terms of the complex variable z = r eiS

the equations of plane isotropic elasticity for equilibrium configurations in the absence of
body forces have a representation in terms of complex potentials O(z) and w(z) ([8], Chap. VIII) in
the form

U= Ur + ius = (2Mt1 e-iS[KO(Z)- zO'(z)- cij(z)]

Tr = Urr + iUr8 = O'(z)+O'(z)- zO"(z)- zz-lcij'(Z)

Ts = Uoo - iUr8 = O'(z) + O'(z) + zO"(z) + zz-lcij'(Z)

fft

Fig. 1. Local coordinates for fixed-free corner.

tThis method is also colsely related to the integral equation method described in [7].
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where Un Ue are physical displacement components, Urn Uee, Ure are stress components, f.L is the
shear modulus, and K = 3- 411 (for plane strain) with II Poisson's ratio. Following the ideas of
England [9], we seek nontrivial potentials of the form

O(z) = Az\ w(z) = Bz A (2)

which lead to fields satisfying the homogeneous conditions

(3)

Upon substituting (2) into (1), the boundary conditions (3) require

KA -AA -B=O

A eiA
". - AA +B= 0

which yields the characteristic equation

2A 2 K
2+ 1

cosA7r =----.
K 2K

For A an eigenvalue we have the associated eigenstate defined by

where the real and imaginary parts of A = a + ia' are related through

(4)

(5)

(6)

a I K - 2A +cos A7ra=-=a sin A7r
sin A7r

K +2A +cos A7r
(7)

provided A is not an integer.
Denote by u the displacement field and t the traction vector on a contour C corresponding to

the solution of a particular plane equilibrium problem in a simply connected region containing C,
and let Ii, i correspond to any other such solution. In the absence of body forces Betti's reciprocal
work relation [10] takes the form

Ie (u.i-li.t)ds =0. (8)

Referring to Fig. 2, since the stress field associated with any particular problem is singular at
the corner we delete a small neighborhood of the singular point with the quarter arc C. and
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Fig. 2. Integration contour.
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denote the remainder of the contour C by C'. Then eqn (8) becomes

-f (u . t-u.t) ds ==f (u .t- u.t) ds.
c. C f
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(9)

The idea now is to employ a suitable auxiliary elastic state so that the integral on C. can be
evaluated for arbitrarily small E in terms of the singular stress field intensity. In the neighborhood
of the corner the displacement and stress fields are of the formt

,A
Ur == A(l +K) {(K - A)K1[cos (1- A)8 - cos (l +A)8]

- KII[(K - A)sin(l- A)8 -(K +A) sin(l + A}8]} + remainder
A

UII = A«(+ K) {K1[-(K + A)sin(1- A}8 +(K - A) sin (1 + A)8]

-(K + A)KII[cos (1- A)8 -cos (1 + A)8]}+remainder
,-(I-A)

Ur = -t-{KI[(3 - A) cos (1- A)8 - (K - A) cos (1 +A)8]
+K

- KII [(3 - A) sin (1- A}8 - (K +A) sin (l +A)8}+ remainder
,-(I-A)

UII =-1-{K1[(l +A)COS(1- A)8 +(K -A)COS(1 +A)8]
+K

- KII [(1 +A) sin (1- A)6 +(K + A) sin (1 + A)6]) + remainder
~I-A) .

'Tri! = '1 +K {K1[(1- A) sin(1- A)8 +(K - A) sin (1 +A)8]

+KII [(1- A) cos (1- ).)e+(K+).) cos (l + A)8]}+remainder (10)

where the remainder terms are higher order than the dominant singular terms shown. The value
of Ais the smallest non*negative root of the characteristic eqn (5) and the principal part of the
elastic state (10) is then precisely the eigenstate corresponding to this value of A. (The least
positive root of eqn (5) lies between A == 0·5946 for an incompressible material in plane strain, and
unity as Poisson's ratio decreases to zero.) Furthermore, we have introduced the conventional
stress intensity factors

K -lim ,-(I-A)". I
I - VII II~O

r-+O

(11)
K 1· -(I-A) I

II = 1m, Uri! II~O
r-+O

and to be consistent with eqns (6) and (7) we have

sin AlT
KIIIK1=-a= K+2A+COSAlT (12)

for all loadings.
Since - A must also be an eigenvalue of (5), the auxiliary state is taken to be the

corresponding eigenstate
-A. c, {( ( .Ur = A(1+K) K+A)[COS l-A)8-cos(l+A)6]

+ 'Y[(K - A) sin (1- A}8 -(K +A) sin (1 +A)8])

tSee [6] or [9].
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fie = A(~r;AK) {-[(K +A) sin (1- A)8 -(K A) sin (1 + A)(J]

+ Y(K - A)[cos (1 - A)O - cos (1 + A)O])

cr-O +AI

o'r = +K {[(K+A)COS(1 A)0-(3+A)COS(1+A)8]

+ Y[(K - A) sin (1- A)O - (3 + A) sin (1 + A)O])

cr-(I+A)
O'e = +K {[(K +A)COS(l-A)O+(1-A)cos(1+A)O]

+ Y[(K A) sin (1- A)O + (1- A) sin (1 + A)O])

er-(l+A)
!Ire = ~([(K + A) sin (1 A)O +(1 + A) sin (l + A)O]

- Y[(K - A) cos (1- A)O + (l + A) cos (l + A)O]) (13)

where Y =1/ex, e is an arbitrary constant, and we note that 0 vanishes on 8 =0 while te
vanishes on () = 1T 12.

The evaluation of the integral on the left in eqp (9) for arbitrarily small E is direct although
somewhat tedious

I=-lim { (u.i-u.t)ds
E-+O leE

(14)

where

[
K(K+l) A(4+3A)] .

{3= A - I+A smA1T+2A(3K-cosA1T)cotA1T12

(15)

The remaining integral is considerably simplified by having chosen the auxiliary state to satisfy
the homogeneous boundary conditions on 8 =0 and () = 1T 12 since the integrands vanish on these
lines. t Thus we are left with the representation

A(1 + K)2 r ' ,
Kr = 2{3 Je [u.(tle)-(ule).t]ds (16)

where C' is any convenient contour connecting the edges () =0 and () = 1T12 in the body and ule,
tIe are directly computable from eqn (13). We are still left with the necessity of evaluating the
traction and displacement on C', but because this contour may be chosen remote from the
singularity, we need not be concerned with an accurate representation of stresses in the
neighborhood of the corner. This permits the use of any standard finite element code to compute
tractions and displacements on C' without requiring an expensive mesh refinement at the corner.

COMPUTATIONAL RESULTS

The evaluation of the contour integral was easily incorporated into the finite element code
TEXGAP[lI] which uses a conventional displacement method to perform two dimensional

tShould the edge 0 = 1T/2 be loaded with a prescribed traction t we merely add the contribution J.~~12 - II. t ds which
may be evaluated in any convenient manner.
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linearly elastic analyses. Details are entirely similar to those described in [12] where the
analogous computation for crack tip stress intensities was treated.

To iilustrate the nature of the computation and the quality of the results obtainable we treat
the problem of a strip compressed between rough rigid stamps as indicated in Fig. 3and compare
results with those published by Benthem[3] and Gupta [4, 5] for the strip, and by Benthem and
Minderhoud[1] and Gupta[12] for the analogous axisymmetric cylinder problem.

From symmetry consideration only one quarter of the strip was subjected to stress analysis
and the 30 element grid used is also shown in Fig. 3. The contour used in evaluating the integral of
eqn (16) is indicated by the heavy dashed lines. In addition to the stress analysis performed by the
finite element code TEXGAP, the characteristic eqn (5) had to be solved for the appropriate value
of A, the auxiliary state displacements and tractions computed from eqn (13) at points on the
contour, and the results of a (5-point Gauss-Legendre) numerical quadrature of eqn (16)
evaluated and accumulated for each element side in the contour. It should be noted however, that
the additional central processor time needed for this computation is negligible compared to the
running time for the finite element computations.

The strength of the singularity, A, and the ratio KIIIK1 depend only on Poisson's ratio and
may be computed directly from eqns (5) and (12). Since this is discussed adequately in [4] and [5]
we will only comment that the dependence of A and KIIIK1 on Poisson's ratio is identical for the
axisymmetric cylinder and the plane strain strip.

In Fig. 4 we have plotted the dependence of the singularity intensity on Poisson's ratio for a
relatively long strip (L/h = 8·0); these results are indistinguishable from those given graphically
by Gupta[4]t for a semi-infinite strip using an integral equation approach. Shown in the same
figure are results obtained by Gupta[2] for the corresponding axisymmetric cylinder problem.
The difference at II = O'3 is only about 8%.

The effect of the length to width ratio of the strip on the stress intensity at the corner is
indicated in Fig. 5. There does appear to be a significant difference between the present results
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Fig. 3. Grid for compression strip.
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Fig. 4. Dependence of stress intensity on Poisson's ratio.

tThe reader is cautioned that the definition of Kr and Kn given in [2,4,5] contains afactor of "112 not present here.
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Fig. 5. Stress intensity for finite strips.
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Fig. 6. Finite element grids.
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Table 1. Values of KlI IPoh H for various grids and contours L/h =8, II = O·3

63 elem. 30 e1em. 16 elem. 9 elem.
Grid Grid Grid Grid

4 elem. contour 0·165 0·168 0·168 0·169
6 elem. contour 0·163 0·164 0·164

12 elem. contour 0·163 0·163
16 elem. contour 0·163
30 elem. contour 0·163

and those given by Gupta[5], but the cause of this discrepency is not clear. Also shown in Fig. 5
are results published by Benthem and Minderhoud[l] for the analogous effect of the length to
diameter ratio for an axisymmetric cylinder. This curve would tend to substantiate the values
obtained by the present method.

Finally, as an indication of the convergence and accuracy of the method, and its relative
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independence on contour selection we treated the 9, 16 and 63 element grids shown in Fig. 6.
Furthermore, results were obtained using various contours on each grid, and these findings are
tabulated in Table 1.

As can be seen, the method is reasonably accurate and efficient, and not very sensitive to
choice of contour so long as it is a few elements removed from the singularity.
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